

ON THE COMPARISON OF THE THEORETICAL AND EXPERIMENTAL DATA FOR THE KINETICS OF THE COPE REARRANGEMENT OF 1,5-HEXADIENE*

Zdeněk SLANINA

*The J. Heyrovský Institute of Physical Chemistry and Electrochemistry,
Czechoslovak Academy of Sciences, CS-121 38 Prague 2*

Received November 8th, 1982

The Cope rearrangement of 1,5-hexadiene is treated as a process passing through an intermediate; this feature was verified by recent quantum-chemical studies. Relationships are derived between the characteristics of the both partial activation processes involved and the experimental data (which characterize the overall process). It is shown that proper consideration of the kinetic consequences of the existence of the intermediate might help to eliminate the recently reported large difference between the MINDO/3 activation entropy and the experimental entropy for the boat pathway for the Cope rearrangement.

Recently, considerable work has been done on the theoretical study¹⁻⁴ of the mechanism of the Cope rearrangement⁵ (for a general discussion of contemporary knowledge on the Cope rearrangement, see^{6,7}). MINDO/2 and MINDO/3 results^{3,4} have verified the existence of two⁸ distinct paths, each with an intermediate⁹. In terms of stationary points on a potential energy hypersurface, this implies the existence of two different ways interconnecting superimposable energy minima (I, I'), each passing through a pair of superimposable transition states (II, II'), and one local minimum (III) separating them (Fig. 1). The transition states are conventionally called chair and boat, the first being of lower energy. The overall experimental kinetic parameters of the (I) \rightarrow (I') rearrangements of a partially deuterated biallyl for the chair⁹ and the boat¹⁰ pathways were obtained using the kinetic scheme of forward-reverse reactions⁹ (FRR) and of a single forward reaction¹⁰ (FR), respectively. The formation of an intermediate (III) was not considered explicitly. However, quantum-chemical calculations^{3,4} yielded only the activation parameters ΔX_1^* ($X = H, S$) for the simple rate process (I) \rightarrow (III). The object of this report is to note that mere conventional comparison of theoretical ΔX_1^* values with the overall experimental activation parameters may generally be quite misleading for processes of this type.

* This paper results were presented at a Conference of Physical Chemistry, Chlum u Třeboně, Czechoslovakia, Oct. 20-24, 1980.

Formulae

The kinetic problem corresponding to Fig. 1 is described by a system of differential equations which are solvable in closed form¹¹ without introduction of simplifying assumptions on the system itself. However, here the following presumptions were introduced for the whole kinetic problem: (i) zero concentration of species (III) and (I') at time $t = 0$, (ii) mutual independency of the two reaction pathways, (iii) neglect of tunnelling, (iv) neglect of an isotope effect when comparing with the experiment, and (v) full separability of the motions of the individual (rigid) stationary points involved (this assumption cannot be, however, fulfilled for an intermediate of very low stability). Comparison of the results¹¹ with the form of the integrated rate equations used in the evaluation of the experimental data^{9,10} leads to the following relationships between the effective values (*i.e.* theoretical analogues) of the rate constants measured in the experiment and rate constants k_1 and k_2 corresponding to the simple rate processes (I) \rightarrow (III) and (III) \rightarrow (I), respectively (within our study, possible consequences caused by use of absorbances instead of concentrations in an experiment are ignored):

$$k_{\text{eff}}^2 = \frac{k_1}{2} - \frac{1}{2t} \ln \left[1 + \frac{k_1}{2k_2} (1 - e^{-2k_2 t}) \right] \quad (1)$$

$$k_{\text{eff}}^1 = k_1 - \frac{1}{t} \ln \left[\frac{1}{2} + \frac{k_1 + k_2}{k_1 + 2k_2} e^{k_1 t} - \frac{k_1}{2(k_1 + 2k_2)} e^{-2k_2 t} \right]. \quad (2)$$

Here, k_{eff}^2 denotes the effective rate constant for (I) \rightarrow (I') obtained when the FRR scheme was applied⁹ to the observables, while k_{eff}^1 is obtained¹⁰ using the FR scheme. Both effective rate constants generally depend on time t . In the limiting case, $k_2 \gg k_1$, the value of k_{eff}^2 reduces to time independent $k_1/2$ while k_{eff}^1 remains time-dependent.

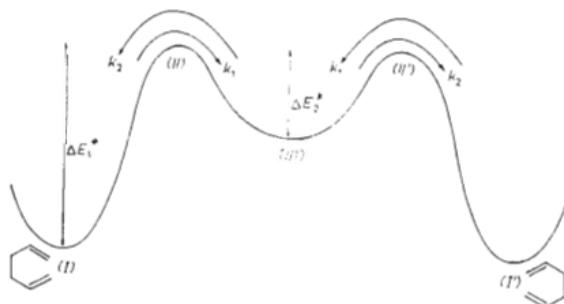


FIG. 1

Reaction profile diagram for the chair and boat Cope rearrangements of 1,5-hexadiene

CHART I

Analytic formulae for time dependences of effective values of activation enthalpies $\Delta H_{\text{eff}}^{\pm 2}$ and $\Delta H_{\text{eff}}^{\pm 1}$ and activation entropies $\Delta S_{\text{eff}}^{\pm 2}$ and $\Delta S_{\text{eff}}^{\pm 1}$

$$\Delta H_{\text{eff}}^{\pm 2} = -RT + \frac{k_1}{k_{\text{eff}}^2} \left(\frac{1}{2} - \frac{1 - e^{-2k_2 t}}{P_1} \right) (RT + \Delta H_1^{\pm}) -$$

$$- \frac{k_1}{k_{\text{eff}}^2 P_1} ((2k_2 t + 1) e^{-2k_2 t} - 1) (RT + \Delta H_2^{\pm}),$$

$$\text{where } P_1 = 4k_2 t + 2k_1 t(1 - e^{-2k_2 t})$$

$$\Delta H_{\text{eff}}^{\pm 1} = -RT + \frac{k_1}{k_{\text{eff}}^1} \left[1 - \frac{1}{tP_2} ((k_2 + (k_1^2 + 3k_1 k_2 + 2k_2^2) t) \cdot e^{k_1 t} - k_2 e^{-2k_2 t}) \right] (RT + \Delta H_1^{\pm}) +$$

$$+ \frac{k_2}{k_{\text{eff}}^1 t P_2} [k_1 e^{k_1 t} - (k_1 + (k_1 + 2k_2) k_1 t) e^{-2k_2 t}] (RT + \Delta H_2^{\pm}),$$

$$\text{where } P_2 = (k_1 + 2k_2)^2/2 + (k_1 + 2k_2)(k_1 + k_2) e^{k_1 t} - (k_1/2)(k_1 + 2k_2) e^{-2k_2 t}$$

$$\Delta S_{\text{eff}}^{\pm 2} = \frac{1}{T} \Delta H_{\text{eff}}^{\pm 2} + R \ln \left(\frac{h}{kT} k_{\text{eff}}^2 \right)$$

$$\Delta S_{\text{eff}}^{\pm 1} = \frac{1}{T} \Delta H_{\text{eff}}^{\pm 1} + R \ln \left(\frac{h}{kT} k_{\text{eff}}^1 \right)$$

$$k_1 = \frac{kT}{h} e^{\Delta S_1^{\pm 2}/R} e^{-\Delta H_1^{\pm 2}/R/T}$$

$$k_2 = \frac{kT}{h} e^{\Delta S_2^{\pm 2}/R} e^{-\Delta H_2^{\pm 2}/R/T},$$

where T denotes temperature and h , k , and R are the fundamental constants.

Starting from Eqs (1) and (2), somewhat complicated but still analytic formulae for the time dependences of the effective values of the activation enthalpy ($\Delta H_{\text{eff}}^{\pm 2}$ or $\Delta H_{\text{eff}}^{\pm 1}$) and entropy ($\Delta S_{\text{eff}}^{\pm 2}$ or $\Delta S_{\text{eff}}^{\pm 1}$) can be derived (Chart I).

DISCUSSION AND CONCLUSIONS

Five variable parameters appear in our formulae (for a given temperature): ΔX_1^{\pm} , ΔX_2^{\pm} (the latter corresponding to rate process (III) \rightarrow (I)), and the time of observation. Of all these parameters, the ΔH_2^{\pm} term represents a key indefinite value. The MINDO/3 values⁴ of ΔX_2^{\pm} at a temperature of 523 K (a value representing the experimental temperature intervals^{9,10} well) can be considered reliable enough^{12,13}. However, there is a vagueness in the ΔH_2^{\pm} terms due to orbital degeneracy^{3,4}. Three MINDO/3 estimations of the ΔH_2^{\pm} values can be found⁴ (cf.¹²⁻¹⁴) in the literature (11.3, 53.1, 115.9 and 6.7, 79.5, 142.3 kJ mol^{-1} for the chair and the boat pathway, respectively). In addition, the values of ΔH_2^{\pm} taken from the interval between the highest estimation of ΔH_2^{\pm} and the value of ΔH_1^{\pm} were also treated. No data on ΔS_2^{\pm} have been reported, but the region of its values is supposed to be rather narrow (cf.¹⁵). Considering symmetry, ΔS_2^{\pm} was set equal to 0.0 and $-9.6 \text{ J mol}^{-1} \text{ K}^{-1}$ for the boat and the chair pathway, respectively. Results of the ΔH_2^{\pm} parameter variation are sketched in Figs 2 and 3 for the chair and boat pathways, respectively.

In the ΔH_2^{\pm} region studied, intermediate (III) manifests itself in the $\Delta X_{\text{eff}}^{\pm 2}$ values rather insignificantly for the chair pathway, especially for the $\Delta H_{\text{eff}}^{\pm 2}$ term. The $\Delta S_{\text{eff}}^{\pm 2}$ term (in the relevant time interval⁹) is somewhat lower than ΔS_1^{\pm} by a value close to $R \ln 2$. Nevertheless, the agreement⁴ between the MINDO/3 and experimental data⁹ does not change substantially if intermediate (III) is considered.

On the other hand, for the boat pathway the differences between the $\Delta X_{\text{eff}}^{\pm 1}$ and ΔX_1^{\pm} values are considerable (except for the lowest estimates of ΔH_2^{\pm}). For the sake of unification, the time interval in Fig. 3 was chosen the same as that in Fig. 2, *i.e.* close to the region given in ref.⁹ No information concerning the time region was given in ref.¹⁰ Although (according to ref.¹⁶) the interval chosen in fact differs from the region used in ref.¹⁰, the qualitative features of Fig. 3 are not influenced by this fact. Clearly, values of ΔH_2^{\pm} can be chosen that lead to satisfactory agreement between the theoretical $\Delta X_{\text{eff}}^{\pm 1}$ terms and experimental data¹⁰. Thus, the only case of serious disagreement between the MINDO/3 and experimental activation entropies for processes studied so far^{12,13} might be explained in this way. The required ΔH_2^{\pm} values would however exceed the above-mentioned estimates, that would essentially be connected with an increase in the stability of intermediate (III) and with a deepening of the time dependency of the effective rate constant (2). Nevertheless, even in the case of the highest ΔH_2^{\pm} term used in our study, the equilibrium constant $K = k_1/k_2$ is still sufficiently low (about 10^{-4}). It can be concluded that our analysis supports the existence of intermediate (III) indicating, however, a need of a more precise quantum-chemical evaluation of the ΔH_2^{\pm} term itself.

Finally, there may still be one important feature of the Cope rearrangement to consider: the proposed fact^{3,4} that intermediate (III) might be common to both pathways (and even to the rearrangement of bicyclo[2.2.0]hexane). The study of an extension of the presented kinetic scheme to one generalized in this way is in progress.

Even if our approach were only partly helpful as far as the specific discrepancy between the MINDO/3 and experimental data for the boat pathway is concerned, there remains a clear warning in relation to meaningful comparisons of experimental

FIG. 2

Time dependences of the effective activation enthalpy $\Delta H_{\text{eff}}^{\pm 2}$ and entropy $\Delta S_{\text{eff}}^{\pm 2}$ for the chair pathway of the Cope rearrangement of 1,5-hexadiene at 523 K; the indices on the curves denote the ΔH_2^{\pm} values in kJ mol^{-1} ; the bold arrow indicates the experimental value⁹, the vacant arrow the ΔX_1^{\pm} value⁴, and the hatching the experimental time region⁹ (in the Figure, $\Delta H_{\text{eff}}^{\pm 2}$ and $\Delta S_{\text{eff}}^{\pm 2}$ is labelled as $\Delta H_{\text{eff}}^{\pm(\rightarrow)}$ and $\Delta S_{\text{eff}}^{\pm(\rightarrow)}$, resp.).

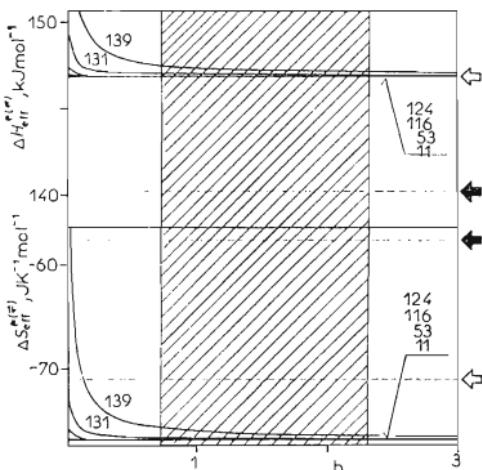
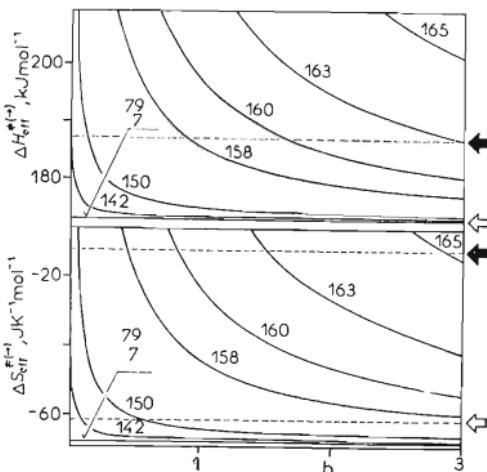



FIG. 3

Time dependences of the effective activation enthalpy $\Delta H_{\text{eff}}^{\pm 1}$ and entropy $\Delta S_{\text{eff}}^{\pm 1}$ for the boat pathway of the Cope rearrangement of 1,5-hexadiene at 523 K; the indices on the curves denote the ΔH_2^{\pm} values in kJ mol^{-1} ; the bold arrow indicates the experimental value¹⁰, the vacant arrow the ΔX_1^{\pm} value⁴ (in the Figure, $\Delta H_{\text{eff}}^{\pm 1}$ and $\Delta S_{\text{eff}}^{\pm 1}$ is labelled as $\Delta H_{\text{eff}}^{\pm(\rightarrow)}$ and $\Delta S_{\text{eff}}^{\pm(\rightarrow)}$, resp.).

and theoretical values in similar situations. Recent quantum-chemical studies have disclosed¹⁷⁻²¹ a number of rate processes which are realized through an (relatively stable) intermediate (or even intermediates). According to the results presented, due respect should be paid to this fact when comparing such theoretical data with experimental values. However, the procedure suggested is useful for an intermediate of non-negligible stability; its behaviour for $k_2 \rightarrow \infty$ needs a further investigation²².

The author is grateful to Professor J. Kuthan for calling his attention to this problem and to Professor M. J. Goldstein for providing details¹⁶ on experiments¹⁰ and for constructive suggestions.

REFERENCES

1. Simonetta M., Favini G., Mariani C., Gramaccioni P.: J. Amer. Chem. Soc. **90**, 1280 (1968).
2. Brown A., Dewar M. J. S., Schoeller W.: J. Amer. Chem. Soc. **92**, 5516 (1970).
3. Komornicki A., McIver J. W., jr: J. Amer. Chem. Soc. **98**, 4553 (1976).
4. Dewar M. J. S., Ford G. P., McKee M. L., Rzepa H. S., Wade L. E.: J. Amer. Chem. Soc. **99**, 5069 (1977).
5. Cope A. C., Hardy E. M.: J. Amer. Chem. Soc. **62**, 441 (1940).
6. Wehrli R., Belluš D., Hansen H.-J., Schmid H.: Chimia **30**, 416 (1976).
7. Dewar M. J. S., Wade L. E., jr: J. Amer. Chem. Soc. **99**, 4417 (1977).
8. Doering W. von E., Roth W. R.: Tetrahedron **18**, 67 (1962).
9. Doering W. von E., Toscano V. G., Beasley G. H.: Tetrahedron **27**, 5299 (1971).
10. Goldstein M. J., Benzon M. S.: J. Amer. Chem. Soc. **94**, 7147 (1972).
11. Frost A. A., Pearson R. G.: *Kinetics and Mechanism*, 2nd Ed., p. 176. Wiley, New York 1961.
12. Dewar M. J. S.: Faraday Discuss. Chem. Soc. **62**, 197 (1977).
13. Dewar M. J. S., Ford G. P.: J. Amer. Chem. Soc. **99**, 7822 (1977).
14. Dewar M. J. S.: Chem. Brit. **11**, 97 (1975).
15. Komornicki A., McIver J. W., jr: J. Amer. Chem. Soc. **95**, 4512 (1973).
16. Benzon M. S.: *Thesis*, p. 47. Cornell University, Ithaca 1972.
17. Gillespie P. D., Ugi I.: Angew. Chem., Int. Ed. Engl. **10**, 503 (1971).
18. Dewar M. J. S., Thiel W.: J. Amer. Chem. Soc. **97**, 3978 (1975).
19. Dewar M. J. S., Thiel W.: J. Amer. Chem. Soc. **99**, 2338 (1977).
20. Dewar M. J. S., Olivella S., Rzepa H. S.: J. Amer. Chem. Soc. **100**, 5650 (1978).
21. Jean Y. in the book: *Quantum Theory of Chemical Reactions*, (R. Daudel, A. Pullman, L. Salem, A. Veillard Eds), Vol. I., p. 53. D. Reidel Publ. Comp., Dordrecht 1980.
22. Miller W. H.: J. Chem. Phys. **65**, 2216 (1976).
23. Gajewski J. J.: Accounts Chem. Res. **13**, 142 (1980).
24. Slanina Z.: Z. Phys. Chem. (Wiesbaden) **132**, 41 (1982).
25. Slanina Z.: Int. J. Quantum Chem. **23**, 1553 (1983).
26. Slanina Z.: Chem. Phys. Lett. **96**, 579 (1983).

Note added in proof: Since the time when this work was completed (Sept. 1980) further progress appeared in the field²³. A two-step generalization of reaction scheme was suggested^{24,25} and corresponding overall $\Delta H_{\text{eff}}^{\ddagger}$ and $\Delta S_{\text{eff}}^{\ddagger}$ terms derived. Moreover, a difference in treating the situations, where either the concentration of absorbance data are available was pointed out^{24,26}. Finally, a combination of the existing experimental and theoretical information on Cope rearrangement of 1,5-hexadiene (*via* the boat pathway) has shown²⁶ that this reaction should involve an intermediate of very low stability.